SOME PROPERTIES OF GLUED GRAPHS AT COMPLETE CLONE IN THE VIEW OF ALGEBRAIC COMBINATORICS

Seyyede Masoome Seyyedi , Farhad Rahmati
Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran. Corresponding Author: Email: frahmati@aut.ac.ir

Abstract

A glued graph at complete clone K_{r} is obtained from combining two graphs by identifying edges of K_{r} of each original graph. We investigate how to change some properties such as height, big height, Krull dimension, Betti numbers by gluing of two graphs at complete clone. We give a sufficient and necessary condition so that the glued graph of two Cohen-Macaulay chordal graphs at complete clone is a Cohen-Macaulay graph. Moreover, we present the conditions that the edge ideal of gluing of two graphs at complete clone has linear resolution whenever the edge ideals of original graphs have linear resolution. We show when gluing of two independence complexes, line graphs, complement graphs can be expressed as independence complex, line graph and complement of gluing of two graphs.

Key Words: Glued graph, Height, Big height, Krull dimension, Projective dimension, Linear resolution, Betti number, Cohen-Macaulay.

INTRODUCTION

The concept edge ideal was first introduced by Villarreal in [23], that is, let G be a simple (no loops or multiple edges) graph on the vertex set $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ and the edge set $E(G)$. Associate to G is a quadratic square free monomial ideal $I(G) \subseteq R=k\left\lceil x_{1}, \ldots, x_{n}\right\rceil$, with k a field, which is generated by $x_{i} x_{i}$ such that $\left\{x_{i}, x_{i}\right\} \in E(G)$. An approach to studying combinatorial properties of a graph is to examine some of algebraic invariants of the edge ideal. Indeed, an aim of recent much research has been to create a dictionary between algebraic properties of $I(G)$ and properties of G.
In 2003, Uiyyasathain presented a new class of graphs in [19], glued graphs, that is, let G_{1} and G_{2} be any graphs, $H_{1} \subseteq G_{1}$ and $H_{2} \subseteq G_{2}$ be non-trivial connected and such that $H_{1} \cong H_{2}$ with an isomorphism f. The glued graph of G_{1} and G_{2} at H_{1} and H_{2} with respect to f, denoted by $G_{1} \triangleleft_{H . \sim f_{H_{-}}} \triangleright G_{2}$, is as the graph that results from combining G_{1} with G_{2} by identifying H_{1} and H_{2} in the glued graph. In [15], Promsakon and Uiyyasathain characterized graph gluing between trees, forests, and bipartite graphs. Also, they could give an upper bound of the chromatic number of glued graphs in terms of their original graphs. In [21], Uiyyasathain and Saduakdee studied the perfection of glued graphs at K_{n}-clone. In [20], Uiyyasathain and Jongthawonwuth obtained bounds of the clique partition numbers of glued graph at K_{2}-clones and K_{3}-clones in terms of their original graphs. In [14], Pimpasalee and Uiyyasathain investigated bounds of clique covering numbers of glued graphs at K_{n}-clones in terms of their original graphs.
As mentioned above, the study of glued graphs from combinatorial points of view has become an active area, but our main purpose of the current paper is to express algebraic features of glued graphs at complete clone using combinatorial properties. Also, we have tried as much as possible to give an accurate description of some properties of a glued graph in terms of their original graphs. Furthermore, we intend to verify whether the property of being CohenMacaulay, Gorenstein (for chordal graphs) having linear resolution transfer from the glued graph to original graphs and vice versa. One of the main reasons for the importance of gluing of two graphs is the fact that this operation creates a larger class of graphs which one can obtain the results on the larger graph according to the information of the smaller graphs.

Our paper is organized as follows. In section 2, we give an explicit formula for computing the height of glued graph at complete clone. Also, we present a lower bound for the big height of the glued graph at complete clone and characterize the glued graphs satisfying such bound. In section 3, we provide a necessary and sufficient condition which the equality
$\beta_{i, i+2}\left(I\left(G_{1} \triangleleft_{K_{r}} \triangleright G_{2}\right)\right)=\beta_{i, i+2}\left(I\left(G_{1}\right)\right)+$
$\beta_{i, i+2}\left(I\left(G_{2}\right)\right)-\beta_{i, i+2}\left(I\left(K_{r}\right)\right)$

We obtain explicit formulas for computing $\beta_{2.4}\left(G_{1} \triangleleft_{K .-} \triangleright G_{2}\right), \beta_{3.6}\left(G_{1} \triangleleft_{K .-} \triangleright G_{2}\right)$ and also we present a lower
bound for $\beta_{i .2(i+1)}\left(I\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)\right)$. We show that having linear resolution of the edge ideal of glued graph at complete clone implies that edge ideals of original graphs have linear resolution. A simple example illustrates having linear resolution the edge ideals of original graphs does not guarantee the existence of this property of the edge ideal of glued graph at complete clone, then we present a necessary and sufficient condition for having linear resolution of the edge ideal of glued graph at complete clone. For chordal graphs, we provide the conditions that being CohenMacaulay preserves under operation gluing of two graphs at complete clone and vice versa. As a result, we obtain a necessary and sufficient condition for being Gorenstein of gluing of two Cohen-Macaulay chordal graphs at complete clone. In Section 4, we give an upper bound for the projective dimension and Alexander dual of the edge ideal of the glued graph at any clone. For any two connected graphs containing a connected subgraph H, we investigate the relation between the complement, line graph and independence complex of the glued graph at clone H and the complement, line graph and independence complex of original graphs. Furthermore, we determine a sufficient condition for vertex decomposability of the glued graph at any clone. In [16], it is proved that the glued graph of connected chordal graphs is chordal. The converse is not true in general. We characterize a useful condition for being chordal of original graphs when the glued graph is chordal.

HEIGHT AND BIG HEIGHT

Let \boldsymbol{G} be a simple (no loops, multiple edges) graph with the vertex set $\boldsymbol{V}(\boldsymbol{G})=\left\{\boldsymbol{x}_{\boldsymbol{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right\}$ and the edge set $\boldsymbol{E}(\boldsymbol{G})$. The edge ideal of \boldsymbol{G} is generated by $\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}}$ where $\left\{\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{i}}\right\} \in \boldsymbol{E}(\boldsymbol{G})$. The complete graph on \boldsymbol{n} vertices, denoted by $\boldsymbol{K}_{\boldsymbol{n}}$, is the graph with edge set $\left\{\left\{\boldsymbol{x}_{i}, \boldsymbol{x}_{\boldsymbol{i}}\right\}: \boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{i}} \in \boldsymbol{V}\left(\boldsymbol{K}_{n}\right), \boldsymbol{x}_{\boldsymbol{i}} \neq \boldsymbol{x}_{\boldsymbol{i}}\right\}$.
Let G_{1} and G_{2} be any two graphs with disjoint vertex sets. Let H_{1} and H_{2} be non-trivial connected subgraphs of G_{1} and G_{2}, respectively, such that $H_{1} \cong H_{2}$ with an isomorphism f. We combine G_{1} and G_{2} by identifying H_{1} and H_{2} with respect to the isomorphism f. This resulting graph is called glued graph of G_{1} and G_{2} at H_{1} and H_{2} with respect to f. We denote this glued graph by $G_{1} \triangleleft_{H} \triangleright G_{2}$ where H is the copy of H_{1} and H_{2} in this glued graph. We refer to H, H_{1} and H_{2} as the clones of the glued graph, G_{1} and G_{2}, respectively, and refer to G_{1} and G_{2} as the original graphs. Thus the combined graph is also called the glued graph of G_{1} and G_{2} at H-clone; see [20].
In this section, we will give an exact formula for the height of the edge ideal of the glued graph of two connected graphs at complete clone. Furtheremore, we will investigate a lower bound for the big height of the edge ideal of such graph. The vertex covering number of $G, \alpha_{0}(G)$, is the smallest number of vertices in any minimal vertex cover. We distinguish the vertex covering number of the glued graph at complete clone K_{r} depending on the number of $N_{r_{r}}(v)$ appeared in minimal vertex cover of $G_{i} \backslash K_{r}$ with minimum cardinality, for any $v \in K_{r}$ and $i=1,2$.
Theorem 2.1 Let G_{1} and G_{2} be any two graphs containing subgraph K_{r}. Then
$\alpha_{0}\left(G_{1} \triangleleft_{K_{r}} \triangleright G_{2}\right)=\alpha_{0}\left(G_{1} \backslash K_{r}\right)+\alpha_{0}\left(G_{2} \backslash K_{r}\right)+r-$ 1
if and only if there exists $v \in V\left(K_{r}\right)$ such that $N_{G_{r}}(v) \subseteq A_{1}$ and $N_{G_{\mathrm{r}}}(v) \subseteq A_{2}$ where A_{i} 's are minimal vertex covers of $G_{i} \backslash K_{r}$ with $\left|A_{i}\right|=\alpha_{0}\left(G_{i} \backslash K_{r}\right)$ for $i=1,2$. Otherwise,

$$
\alpha_{0}\left(G_{1} \triangleleft_{K} \triangleright G_{2}\right)=\alpha_{0}\left(G_{1} \backslash K_{r}\right)+\alpha_{0}\left(G_{2} \backslash K_{r}\right)+r .
$$

Proof. \Rightarrow) Since there exists a vertex $v \in V\left(K_{r}\right)$ that does not appear in minimal vertex cover of $G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$ with minimum cardinality, it follows that all neighbourhoods of v in $G_{1} \backslash K_{r}$ and $G_{2} \backslash K_{r}$ will be used in minimal vertex cover of $G_{i} \backslash K_{r}$ of cardinality $\alpha_{0}\left(G_{i} \backslash K_{r}\right)$ for $i=1,2$.
$\Leftrightarrow)$ Any vertex cover of K_{r} contains of at least $r-1$ vertices. Under the circumstances, K_{r} can be covered by $r-1$ vertices in $G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$. Hence we get

$$
\alpha_{0}\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)=\alpha_{0}\left(G_{1} \backslash K_{r}\right)+\alpha_{0}\left(G_{2} \backslash K_{r}\right)+r-1,
$$

as required.
Applying previous theorem and [24, Corollary 6.1.18] and [22, Proposition 7.2.5] yields the following equality.
Corollary 2.2 Let G_{1} and G_{2} be any two graphs containing subgraph K_{r}. Then
$\operatorname{dim}\left(G_{1} \triangleleft_{K} \triangleright G_{2}\right)=\operatorname{dim}\left(G_{1} \backslash K_{r}\right)+\operatorname{dim}\left(G_{2} \backslash K_{r}\right)+0$
Let e, e^{t} be two distinct edges of G. The distance between e and e^{t} in G, denoted by $\operatorname{dist}_{G}\left(e, e^{t}\right)$, is defined by the minimum length l among sequences $e_{0}=e, e_{1}, \ldots, e_{l}=e^{t}$ with $e_{i-1} \cap e_{i} \neq \phi$, where $e_{i} \in E_{G_{r}}$. If there is no such a sequence, we define $\operatorname{dist}_{r_{r}}\left(e, e^{t}\right)=\infty$. We say that e and e^{t} are 3 -disjoint in G if $\operatorname{dist}_{F_{r}}\left(e, e^{\prime}\right) \geq 3$. A subset $E \subset E_{G_{F}}$ is said to be pairwise 3-disjoint if every pair of distinct edges $e, e^{\prime} \in E$ are 3-disjoint in G; see [7, Definitions 2.2 and 6.3]
The graph B with $V(B)=\left\{w, z_{1}, \ldots, z_{d}\right\}$ and $E(B)=\left\{\left\{w, z_{i}\right\}: i=1, \ldots, d\right\}(d \geq 1)$ is called a bouquet.

Then the vertex w is called the root of B, the vertices z_{i} flowers of B, and the edges $\left\{w, z_{i}\right\}$ stems of B; see [26, Definition 1.7]. We set
$F(B):=$
$\{z \in V(G): z$ is a flower of some bouquet in $B\}$
$R(B):=$
$\{w \in V(G): w$ is a root of some bouquet in $B\}$, $S(B):=$
$\{s \in E(G): s$ is a stem of some bouquet in $B\}$.
The type of \mathbf{B} is defined by $(|F(\boldsymbol{B})|,|R(\boldsymbol{B})|)$; see [12].
Let us recall the concept semi-strongly disjoint that was introduced by Kimura in [12, Definition 5.1]. A set $B=\left\{B_{1}, B_{2}, \ldots, B_{i}\right\}$ of bouquets of G is said to be semistrongly disjoint in G if the following conditions are satisfied:
1). $V\left(B_{k}\right) \cap V\left(B_{l}\right)=\phi$ for all $k \neq l$.
2). Any two vertices belonging to $R(B)$ are not adjacent in G. We set
$d_{C_{f}}^{\prime}=\max \{|F(B)|: B$ is a semi-strongly

disjoint set of bouquets of $G\}$.

Definition 2.3 (22, Definition 7.7.23) Let G be a graph. The cardinality of the largest minimal vertex cover of G is called the big height of I(G).
In [4, Theorem 3.3], N. Erey showed the following equality:
Lemma 2.4 For any simple hypergraph \mathcal{H}, the equality bightI $(\mathcal{H})=\mathrm{d}_{\mathscr{H}}^{\prime}$ holds.
Theorem 2.5 Let G_{1} and G_{2} be any two graphs containing subgraph K_{r}. Then

which v^{\prime} is the vertex of K_{r} with maximum degree in $G_{1} \triangleleft_{K} \triangleright G_{2}$.
Proof. Using Lemma 2.4, it suffices to construct a semistrongly disjoint set B of bouquets of $G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$. Assume that B^{\prime} is a bouquet with $V\left(B^{\prime}\right)=\left\{v^{\prime}, z_{1}, \ldots, z_{d}\right\}=N_{G, \in I_{v} D F_{m}}\left\lceil v^{\prime}\right\rceil \quad$ and $E\left(B^{\prime}\right)=\left\{\left\{v^{\prime}, z_{i}\right\}: i=1, \ldots, d\right\}$ where v^{\prime} is the vertex of K_{r} with maximum degree in $G_{1} \triangleleft_{K-} \triangleright G_{2}$. Setting $B^{\prime} \in B$, any vertices of $N_{F_{r} .}\left\lceil v^{\prime}\right\rceil$ and $N_{F_{m}}\left\lceil v^{\prime}\right\rceil$ can belong to no bouquets other than B^{\prime} in B, by definition. Suppose that B_{i} is the semistrongly disjoint set of bouquets of $G_{i} \backslash N_{C_{r:}}\left\lceil v^{\prime}\right\rceil$ with the maximum cardinality of flowers for $i=1,2$. Put $B=B^{\prime} \cup B_{1} \cup B_{2}$. Then
 hence one derives the required inequality.
Theorem 2.6 [16, Theorem 2.2] Let G_{1} and G_{2} be connected chordal graphs and H be a connected subgraph of G_{1} and G_{2}. Then $G_{1} \triangleleft_{H} \triangleright G_{2}$ is a chordal graph.
Example 2.7 (The sharpness of the lower bound in Theorem 2.5) Put $G=G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$.
${ }^{0}$ Stuppose that G be a pseudo- complete graph. The notation pseudo- complete graph was introduced by authors in [16]. In such case bight $(I(G))=p d(G)$, applying [12, Corollary 5.6] which the value is precisely computed in [16, Theorem 4.8]. Furthermore, S. Jacques was presented an explicit formula for computing the projective dimension of the complete graphs in [11, Corollary 4.2.9]. Therefore, by placing the amounts in Theorem 2.5, the desired equality follows.

- Suppose that G be a lollipop graph where the (m, n)lollipop graph $L_{m . n}$ is a graph obtained by joining the complete graph K_{m} to the path graph P_{n} by a bridge. The authors computed the projective dimension of such graphs in [17, Theorem 4.3]. Also, using [11, Corollary 7.7.35], one can obtain the projective dimension of the path graphs. By placing the values in Theorem 2.5, one derives the equality.
Theorem2.8 (Auslander and Buchsbaum) [13,Theorem 19.1] Let A be a Notherian local ring and $M \neq 0$ a finite A-module. Suppose that $p d M<\infty$; then
$p d M+\operatorname{depth} M=\operatorname{depth} A$.
Corollary 2.9 Let G_{1} and G_{2} be chordal graphs containing subgraph K_{r}. Then
 which v^{\prime} is the vertex of K_{r} with maximum degree in $G_{1} \triangleleft_{K} \triangleright G_{2}$.
Proof. Applying Theorems 2.5, 2.6, 2.8 and [12, Corollary 5.6], we obtain the desired inequality.

LINEAR RESOLUTION AND COHENMACAULAYNESS

Let I be a monomial ideal in a polynomial ring $R=k\left\lceil x_{1}, \ldots, x_{n}\right]$. Then we can associate to I a minimal graded free resolution of the form
$0 \rightarrow \oplus_{i} R(-i)^{\beta_{l j}} \rightarrow \oplus_{i} R(-i)^{\beta_{l-1, j}} \rightarrow \cdots \rightarrow \oplus_{i} R(-i)^{\beta_{0, j}} \rightarrow R \rightarrow 0$ where $l \leq n$ and $R(-j)$ is the R-module obtained by shifting the degrees of R by i. The number $\beta_{i . i}$ is called the $i j$ th graded Betti number of I.
If d is the smallest degree of a generator of ideal I, then the Betti numbers $\beta_{i . i+d}(I)$ form the so called linear stand of I. An ideal I generated by elements all of degree d is said to have a linear resolution if $\beta_{i . i}(I)=0$ for all $j \neq i+d$.
The regularity of I, denoted by reg(I), is defined by

$$
\operatorname{reg}(I):=\max \left\{j-i \mid \beta_{i, i}(I) \neq 0\right\}
$$

The projective dimension of I, denoted by $p d(I)$, is defined by

$$
p d(I):=\max \left\{i \mid \beta_{i, i}(I) \neq 0\right\} .
$$

Lemma 3.1 Let G_{1} and G_{2} be any two graphs containing subgraph $\quad \mathrm{K}_{\mathrm{r}} \quad$ and $\quad S \subseteq V\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)$ such that $S \cap V\left(G_{1}\right) \neq \phi$ and $S \cap V\left(G_{2}\right) \neq \phi$. If $\left(G_{1} \triangleleft_{K} \triangleright G_{2}\right)_{S}^{C}$ is a disconnected subgraph, then $S \cap V\left(K_{r}\right) \neq \phi$.
Proof. Suppose that $S \cap V\left(K_{r}\right)=\phi$. Thus one can write $S=S_{1} \cup S_{2}$ where $S_{1} \subseteq V\left(G_{1} \backslash K_{r}\right)$ and $S_{2} \subseteq V\left(G_{2} \backslash K_{r}\right)$ and $S_{1}, S_{2} \neq \phi$. Since any vertex of S_{1} is adjacent to all vertices of S_{2} in $\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)_{S}^{c}$, then there is a path in $\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)_{S}^{c}$ that joins v_{1} and v_{2}, for any $v_{1} \in S_{1}$ and $v_{2} \in S_{2}$, which is a contradiction.
Theorem 3.2 [8, Theorem 3.2.4] Let G be a simple graph with the edge ideal $I(G)$. Then for all $i \geq 0$

$$
\beta_{i . i+2}(I(G))=>\quad\left(\left|\operatorname{comp}\left(G_{\S}^{c}\right)\right|-1\right),
$$ of $i+1$ disjoint edges $\}$ |.

Theorem 3.3 Let G_{1} and G_{2} be any two graphs containing subgraph K_{r}. Then
(*) $\beta_{i, i+2}\left[I\left(G_{1} \triangleleft_{K .} \triangleright G_{2 .}\right)\right)=\beta_{i, i+2}\left(I\left(G_{1}\right)\right)+\beta_{i, i+2}\left(I\left(G_{2}\right)\right)-\beta_{i . i+2}\left(I\left(K_{r}\right)\right)$
 only if for any vertex $v \in V\left(K_{r}\right)$ one has $N_{\text {fr. } \backslash K_{-}}(v) \neq \phi$ or $N_{G, \backslash K .}(v) \neq \phi$, but not both.

Proof. $\Leftarrow)$ By Theorem 3.2, we may choose the set $S \subseteq V\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)$ where $|S|=i+2$ and the number of connected components of $\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)_{S}^{c}$ is at least two. Consider the following cases:
1.Take $S \subseteq V\left(G_{1}\right)$.The only contribution to $\beta_{i . i+2}\left(I\left(G_{1} \triangleleft_{K-} \triangleright G_{2}\right)\right)$ is of $|S|=i+2$ whenever the number of connected components of $\left(G_{1} \triangleleft_{K-} \triangleright G_{2}\right)_{S}^{c}$ is at least two. Summing $\left|\operatorname{comp}\left(\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)_{S}^{c}\right)\right|-1$ over all subsets $S \subseteq V\left(G_{1}\right)$ satisfying these properties, we have $\beta_{i . i+2}\left(I\left(G_{1}\right)\right)$.
2. Take $S \subseteq V\left(G_{2}\right)$. Replacing G_{1} by G_{2} leads to similar result as that of previous case.
We claim that there is no subset $S \subseteq V\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)$ with $|S|=i+2 \quad$ which $\quad S \cap V\left(K_{r}\right) \neq \phi, \quad S \cap V\left(G_{1} \backslash K_{r}\right) \neq \phi$, $S \cap V\left(G_{2} \backslash K_{r}\right) \neq \phi$ and $\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)_{S}^{C}$ is disconnected. Suppose that there exists a subset $S \subseteq V\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)$ that holds in situation described. Since $\left(G_{1} \triangleleft_{K} \triangleright G_{2}\right)_{S}^{C}$ is disconnected and any vertex of $S \cap V\left(G_{1} \backslash K_{r}\right)$ is adjacent to any vertex of $S \cap V\left(G_{2} \backslash K_{r}\right)$ in $\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)_{S}^{c}$, so we must have a vertex $v \in S \cap V\left(K_{r}\right)$ such that v is adjacent to all vertices of $S \cap V\left(G_{1} \backslash K_{r}\right)$ and $S \cap V\left(G_{1} \backslash K_{r}\right)$ in $G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$, a contradiction. Also, note that by Lemma 3.1, there is no subset $S \subseteq V\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right) \quad$ which $\quad S \cap V\left(K_{r}\right)=\phi \quad$ and $\left(G_{1} \triangleleft_{K-} \triangleright G_{2}\right)_{S}^{c}$ is disconnected. Therefore, summing all possibilities provides the result. Note that the subset $S \subseteq V\left(K_{r}\right)$ where $|S|=i+2$ and the number of connected components of $\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)_{S}^{C}$ is at least two, is considered in both cases 1 and 2 and hence subtract $\beta_{i . i+2}\left(I\left(K_{r}\right)\right)$ from the rest.
\Rightarrow) Assume that there exist $v \in V\left(K_{r}\right)$ such that $\left|N_{G_{\text {G. }}, K_{-}}(v)\right| \geq 1$ and $\left|N_{G_{\text {Fn }} \backslash K_{-}}(v)\right| \geq 1$. Put $i=r$ and $S=V\left(K_{r}\right) \cup\{x, y\}$ where $x \in N_{f r_{*} \backslash K_{.} .}(v)$ and $y \in N_{G_{\mathrm{m}} \backslash K_{.}}(v)$. Thus $\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)_{S}^{c}$ consists of two connected components, hence the equality $(*)$ does not hold by Theorem 3.2, which is a contradiction.
Lemma 3.4 [24, page 192] Let $I=I(G) \subset R$ be the edge ideal of a graph G. If

$$
\ldots \rightarrow R(-4)^{c} \oplus R(-3)^{b} \rightarrow R(-2)^{q} \rightarrow R \rightarrow R / I \rightarrow 0
$$

is the minimal graded resolution of R / I. The value c is equal to the number of unordered pairs of lines $\left\{f_{i}, f_{i}\right\}$ such that f_{i} and f_{i} are independent lines that cannot be joined by an edge.
Theorem 3.5 Let G_{1} and G_{2} be any two graphs containing subgraph K_{r}. Then
$\beta_{2.4}\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)=\beta_{2.4}\left(G_{1}\right)+\beta_{2.4}\left(G_{2}\right)+\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|$, where
$A_{1}=\left\{\left\{e_{1}, e_{2}\right\} \mid e_{i} \in E\left(G_{i}\right)\right.$ and $e_{i} \cap V\left(K_{r}\right)=\phi$ for $\left.i=1,2\right\}$,
$A_{2}=\left\{\left\{e_{1}, e_{2}\right\} \mid e_{i}=\left\{x_{i}, y_{i}\right\} \in E\left(G_{i}\right)\right.$ for $i=1,2$,
$e_{1} \cap V\left(K_{r}\right)=\phi, e_{2} \cap V\left(K_{r}\right)=$
$\left\{x_{2}\right\}$ and $\left.\left\{x_{2}, x_{1}\right\},\left\{x_{2}, y_{1}\right\} \notin E\left(G_{1}\right)\right\}$
$A_{3}=\left\{\left\{e_{1}, e_{2}\right\} \mid e_{i}=\left\{x_{i}, y_{i}\right\} \in E\left(G_{i}\right)\right.$ for $i=1,2$,
$e_{1} \cap V\left(K_{r}\right)=\left\{x_{1}\right\}, e_{2} \cap V\left(K_{r}\right)=$
ϕ and $\left.\left\{x_{1}, x_{2}\right\},\left\{x_{1}, y_{2}\right\} \notin E\left(G_{2}\right)\right\}$
.Proof. To compute $\beta_{2.4}\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)$, using lemma 3.4 we need count the number of unordered pairs of edges $\left\{e_{1}, e_{2}\right\}$ such that dist $_{f_{\text {resw }} \in F_{n}}\left(e_{1}, e_{2}\right) \geq 3$. Let $e_{1}, e_{2} \in E\left(G_{1}\right)$ such that dist $_{\text {fre }^{\prime}}\left(e_{1}, e_{2}\right) \geq 3$. The number of the edges satisfying this property equals $\beta_{2.4}\left(G_{1}\right)$. Similarly, there exist $\beta_{2.4}\left(G_{2}\right)$ unordered pairs of edges $\left\{e_{1}, e_{2}\right\}$ of G_{2} such that dist $_{f_{r m}}\left(e_{1}, e_{2}\right) \geq 3$. Let A_{1} be the set described above and $\left\{e_{1}, e_{2}\right\} \in A_{1}$. We claim that dist $_{\text {fr. } \triangleleft I V \mapsto f r}\left(e_{1}, e_{2}\right) \geq 3$. If
dist $_{\text {frestr }^{\infty} / \mathcal{F}_{\mathrm{rm}}}\left(e_{1}, e_{2}\right)=2$, then e_{1} is adjacent to e_{2} by $e \in E\left(K_{r}\right)$. Hence, $e_{1} \cap e \neq \phi$, which is a contradiction. Also, if dist $_{\text {fresv }} \subset f_{\text {fm }}\left(e_{1}, e_{2}\right)=1$, then $e_{1} \cap e_{2} \neq \phi$, this means that there exists $x \in V\left(K_{r}\right)$ such that $x \in e_{1} \cap e_{2}$, a contradiction.
Now, suppose that $e_{1} \in E\left(G_{1} \backslash K_{r}\right)$ and $e_{2} \in E\left(G_{2}\right)$ which $e_{2} \cap V\left(K_{r}\right) \neq \phi$. Set $e_{1}=\left\{x_{1}, y_{1}\right\}$ and $e_{2}=\left\{x_{2}, y_{2}\right\}$ such that $x_{2} \in V\left(K_{r}\right)$. If there exists $\left\{x_{1}, x_{2}\right\} \in E\left(G_{1}\right)$ or $\left\{y_{1}, x_{2}\right\} \in E\left(G_{1}\right)$, then one obtains dist $_{G_{r_{e} \in I_{V}} \triangleright G_{m}}\left(e_{1}, e_{2}\right)=2$. Therefore, the contribution to $\beta_{2.4}\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)$ is of $\left\{e_{1}, e_{2}\right\}$ whenever we have $\left\{x_{1}, x_{2}\right\} \notin E\left(G_{1}\right)$ and $\left\{y_{1}, x_{2}\right\} \notin E\left(G_{1}\right)$, that the number of unordered pairs satisfying this property is equal to $\left|A_{2}\right|$, with the notation above. A similar statement holds if one replaces G_{1}
by G_{2} and A_{2} by A_{3} in previous case. Note that if the edges $e_{1} \in E\left(G_{1}\right) \quad$ and $\quad e_{2} \in E\left(G_{2}\right) \quad$ which $e_{1} \cap V\left(K_{r}\right) \neq \phi$ and $e_{2} \cap V\left(K_{r}\right) \neq \phi$, then
$\operatorname{dist}_{\left.\text {G. } \int\right]_{v} \triangleright C_{m}}\left(e_{1}, e_{2}\right) \leq 2$. Summing all possibilities, it follows the desired formula.
Definition 3.6 (9, page 10) Two edges $\{x, y\}$ and $\{z, t\}$ of the graph G is said to be disconnected if :

1. $\{x, y\} \cap\{z, t\}=\phi$
2. $\{x, z\},\{x, t\},\{y, z\}$ and $\{y, t\}$ are not edges in G.

Theorem 3.7 Let G_{1} and G_{2} be any two graphs containing subgraph K_{r}. Then
$\left.\beta_{3.6}\left(G_{1} \triangleleft_{R_{1}} \triangleright G_{2}\right)=\beta_{3.6}\left(G_{1}\right)+\beta_{3.6}\left(G_{2}\right)+\beta_{24}\left(G_{1} \mid K_{r}\right) \cdot\left|E\left(G_{2} \mid K_{r}\right)\right|+\beta_{24}\left(G_{2}\right) K_{r}\right) \cdot E\left(G_{1} \mid K_{r}\right) \mid$ $+\left|E_{1}\right|+\left|A_{1}\right|+\left|A_{2}\right|+\left|B_{1}\right|+\left|B_{2}\right|$,
where
$E_{1}=\left\{\left\{e_{1}, e_{2}, e_{3}\right\} \mid e_{1} \in E\left(K_{r}\right), e_{2} \in E\left(G_{2}\right), e_{3} \in E\left(G_{3}\right)\right.$ such that $\left\{e_{1}, e_{2}\right\}$ and $\left\{e_{1}, e_{3}\right\}$ are disconnected\},
$A_{1}=\left\{\left\{e_{1}, e_{2}, e_{3}\right\} \mid e_{1}, e_{2} \in E\left(G_{1} \mid K_{r}\right)\right.$ and $e_{3} \in E\left(G_{2}\right)$ such that $e_{3} \cap V\left(K_{r}\right) \neq \phi$, dist $f_{f_{1}}\left(e_{1}, e_{2}\right) \geq 3$, $\left\{e_{1}, e_{3}\right\}$ and $\left\{e_{2}, e_{3}\right\}$ are disconnected $\}$,
$A_{2}=\left\{\left\{e_{1}, e_{2}, e_{3}\right\} \mid e_{1}, e_{2} \in E\left(G_{2} \mid K_{r}\right)\right.$ and $e_{3} \in E\left(G_{1}\right)$ such that $e_{3} \cap V\left(K_{r}\right) \neq \phi$, dist $t_{f_{r n}}\left(e_{1}, e_{2}\right) \geq 3$, $\left\{e_{1}, e_{3}\right\}$ and $\left\{e_{2}, e_{3}\right\}$ are disconnected $\}_{1}$
$B_{1}=\left\{\left\{e_{1}, e_{2}, e_{3}\right\} \mid e_{1}, e_{2} \in E\left(G_{1}\right)\right.$ and $e_{3} \quad \in E\left(G_{2} \backslash K_{r}\right)$ such that $e_{1} \cap V\left(K_{r}\right)=\phi, e_{2} \cap V\left(K_{r}\right) \neq \phi$, dist $_{f_{r}}\left(e_{1}, e_{2}\right) \geq 3$ and $\left\{e_{2}, e_{3}\right\}$ are disconnected $\}$,
$B_{2}=\left\{\left\{e_{1}, e_{2}, e_{3}\right\} e_{1}, e_{2} \in E\left(G_{2}\right)\right.$ and $e_{3} \in E\left(G_{1} \backslash K_{r}\right)$ such that $e_{1} \cap V\left(K_{r}\right)=\phi, e_{2} \cap V\left(K_{r}\right) \neq \phi$, $\operatorname{dist}_{f_{m}}\left(e_{1}, e_{2}\right) \geq 3$ and
$\left\{e_{2}, e_{3}\right\}$ are disconnected $\}$.
Proof. By Theorem 3.2, we need to count the number of induced subgraphs of $G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$ consisting of three disjoint edges. It is possible to take three disjoint edges only of $E\left(G_{1}\right)$ or only of $E\left(G_{2}\right)$. The number of the edges satisfying this property equals to $\beta_{3.6}\left(G_{1}\right)$ or $\beta_{3.6}\left(G_{2}\right)$.
One might consider the edges $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that $\left\{e_{1}, e_{2}\right\} \in E\left(G_{1} \backslash K_{r}\right), e_{3} \in E\left(G_{2} \backslash K_{r}\right.$ and dist r. $\left(e_{1}, e_{2}\right) \geq 3$ which the number of these edges is equal to $\beta_{2.4}\left(G_{1} \backslash K_{r}\right)$ and also we have $e_{3} \cap V\left(K_{r}\right)=\phi$, hence there can exist $\beta_{2.4}\left(G_{1} \backslash K_{r}\right) \cdot \mid E\left(G_{2} \backslash K_{r} \mid \quad\right.$ induced subgraphs consisting of three disjoint edges satisfying these properties. Replacing G_{1} by G_{2} leads to similar result as that of
previous case. Moreover, one can consider the edges $\left\{e_{1}, e_{2}, e_{2}\right\}$ such that $e_{1} \in E\left(K_{r}\right), e_{2} \in E\left(G_{1} \backslash K_{r}\right)$ and $e_{3} \in E\left(G_{2} \backslash K_{r}\right)$. Let $e_{1}=\left\{x_{1}, y_{1}\right\}, \quad e_{2}=\left\{x_{2}, y_{2}\right\} \quad$ and $e_{3}=\left\{x_{3}, y_{3}\right\}$. If there exist the edges $\left\{x_{1}, x_{2}\right\},\left\{x_{1}, y_{2}\right\}$, $\left\{y_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\}$ in G_{1} or the edges $\left\{x_{1}, x_{3}\right\}$ and $\left\{x_{1}, y_{3}\right\}$,
$\left\{y_{1}, x_{3}\right\},\left\{y_{1}, y_{3}\right\}$ in G_{2}, then $\left\{e_{1}, e_{2}\right\}$ or $\left\{e_{1}, e_{3}\right\}$ are not disjoint. Therefore, in our situation, the contribution to $\beta_{3.6}\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)$ is of $\left\{e_{1}, e_{2}, e_{3}\right\}$ whenever the edges $\left\{e_{1}, e_{2}\right\}$ and $\left\{e_{1}, e_{3}\right\}$ are disconnected. With the notation above, the number of induced subgraphs consisting of these edges is equal to $\left|E_{1}\right|$.
It is possible to suppose that the edges $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that $e_{1}, e_{2} \in E\left(G_{1} \backslash K_{r}\right)$ and $\operatorname{dist}_{F_{r}}\left(e_{1}, e_{2}\right) \geq 3, e_{3} \in E\left(G_{2}\right)$ in which $e_{3} \cap V\left(K_{r}\right) \neq \phi$. In the situation considered, e_{1}, e_{2} and e_{3} are not necessarily disjoint. Let $e_{1}=\left\{x_{1}, y_{1}\right\}$, $e_{2}=\left\{x_{2}, y_{2}\right\}$ and $e_{3}=\left\{x_{3}, y_{3}\right\}$ which $x_{3} \in V\left(K_{r}\right)$. If there are not the edges $\left\{x_{1}, x_{3}\right\},\left\{y_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\}$ and $\left\{y_{2}, x_{3}\right\}$ in G_{1}, then the induced subgraph on the vertex set $\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{2}\right\}$ consists of three disjoint edges. With the notation above, the number of induced subgraphs consisting of these edges is equal to $\| A_{1} \mid$. Replacing G_{1} by G_{2} leads to similar result as that of previous case.
Now, suppose that the edges $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that $e_{1}, e_{2} \in E\left(G_{1}\right)$ and $\operatorname{dist}_{\text {r. }^{\prime}}\left(e_{1}, e_{2}\right) \geq 3$, in which $e_{1} \cap V\left(K_{r}\right)=\phi$ and $e_{2} \cap V\left(K_{r}\right) \neq \phi$. Let $e_{1}=\left\{x_{1}, y_{1}\right\}$, $e_{2}=\left\{x_{2}, y_{2}\right\}$ and $e_{3}=\left\{x_{3}, y_{3}\right\}$ which $x_{2} \in V\left(K_{r}\right)$. Using similar argument as above, we must have $\left\{x_{2}, x_{3}\right\},\left\{x_{2}, y_{3}\right\} \notin E\left(G_{2}\right)$.With the notation above, the number of induced subgraphs consisting of the edges satisfying these properties is equal to $\left|B_{1}\right|$. Replacing G_{1} by G_{2} leads to similar result as that of previous case. Assuming all possibilities, our desired result follows.
Corollary 3.8 Let G_{1} and G_{2} be any two graphs containing subgraph K_{r}. Then

$$
\begin{aligned}
& \left.\beta_{i, 2(i+1)}\left(I\left(G_{1} \triangleleft K_{r}>G_{2}\right)\right) \geq \beta_{i, 2(i+1)} I\left(G_{1}\right)\right)+ \\
& \beta_{i, 2(i+1)}\left(I\left(G_{2}\right)\right)+ \\
& \sum_{i=1}^{i} \beta_{i .2(i+1)} I\left(G_{1} \backslash K_{r}\right) \cdot \beta_{i-i .2(i-i+1)} I\left(G_{2} \backslash K_{r}\right) .
\end{aligned}
$$

Proof. By Theorem 3.2, we may consider induced subgraphs of $G_{1} \triangleleft_{K .} \triangleright G_{2}$ containing $i+1$ disjoint edges. Since any edge of $G_{1} \triangleleft_{K} \triangleright G_{2}$ belongs to G_{1} or G_{2}, we derive $\beta_{i .2(i+1)}\left(I\left(G_{1}\right)\right)+\beta_{i .2(i+1)}\left(I\left(G_{2}\right)\right)$ by counting such induced subgraphs in G_{1} or G_{2}. Also, it is possible to choose j disjoint edges of $G_{1} \backslash K_{r}$ and $i+1-j$ disjoint edges of $G_{2} \backslash K_{r}$. Applying Theorem 3.2, the number of the induced subgraphs containing j disjoint edges of $G_{1} \backslash K_{r}$ and $i+1-j$ disjoint edges of $G_{2} \backslash K_{r}$ is equal to $\beta_{i-1.2 i}\left(I\left(G_{1} \backslash K_{r}\right)\right)$ and $\beta_{i-i .2(i-i+1)}\left(I\left(G_{2} \backslash K_{r}\right)\right)$, respectively. On the other hand, since the edges contain no vertices of K_{r}, then induced subgraph on the vertices contains $i+1$ disjoint edges of $G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$. Hence, there are
$\beta_{i-1.2 i}\left(I\left(G_{1} \backslash K_{r}\right)\right) \cdot \beta_{i-i .2(i-i+1)}\left(I\left(G_{2} \backslash K_{r}\right)\right)$ induced subgraphs of this type. Counting all the possibilities, we obtain $\sum_{i=1}^{i} \beta_{i-1.2 i}\left(I\left(G_{1} \backslash K_{r}\right)\right) \cdot \beta_{i-i .2(i-i+1)}\left(I\left(G_{2} \backslash K_{r}\right)\right)$. Note that j cannot equal to $i+1$, because it has been counted in case 1 . Summing all the described cases, we obtain the desired bound.
In 1990, Fröberg presented a combinatorial characterization of the edge ideals having linear resolution.
Theorem 3.9 (Fröberg's Theorem) [2, Theorem 3.3] Let G be a graph. Then $I(G)$ has a linear resolution if and only if G^{c} is a chordal graph.
Theorem 3.10 Let G_{1} and G_{2} be any two graphs containing subgraph K_{r}. If $I\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)$ has a linear resolution, then $I\left(G_{1}\right)$ and $I\left(G_{2}\right)$ have a linear resolution.

Proof. Using Fröberg's Theorem, it suffices to show that G_{1}^{c} and G_{2}^{c} are induced subgraphs of $\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)^{c}$. Suppose that $\{x, y\} \in E\left(G_{1}^{c}\right)$, then $\{x, y\} \notin E\left(G_{1}\right)$. We claim that $\{x, y\} \notin E\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)$, because if not, $\{x, y\} \in E\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)$ implies that $\{x, y\} \in E\left(G_{2}\right)$, hence it follows that $x, y \in V\left(K_{r}\right)$, contradicting the fact that K_{r} is subgraph of G_{1}. In the same way, one can prove that $\left(G_{2}\right)^{c}$ is an induced subgraph of $\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)^{c}$.
It is natural to ask if the converse of Theorem 3.10 is true or false. That is to say, if $I\left(G_{1}\right)$ and $I\left(G_{2}\right)$ have linear resolution, then does $I\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)$ have a linear resolution?
Example 3.11 Consider $G_{1}=G_{2}=C_{4}$ and $H=K_{2}$. By computation by $C o C o A$, we see that $I\left(C_{4}\right)$ has the minimal graded free resolution as:

$$
0 \rightarrow R(-4) \rightarrow R(-3)^{4} \rightarrow R(-2)^{4} \rightarrow R \rightarrow 0
$$

Then $I\left(G_{1}\right)$ and $I\left(G_{2}\right)$ have linear resolution. Also, by computation we deduce that $I\left(C_{4} \triangleleft_{K_{n}} \triangleright C_{4}\right)$ has the minimal graded free resolution as:
$0 \rightarrow R(-6) \rightarrow R(-4)^{4} \oplus R(-5)^{2} \rightarrow R(-3)^{10} \oplus R(-4) \rightarrow R(-2)^{7} \rightarrow R \rightarrow 0$. It follows that $I\left(C_{4} \triangleleft_{K_{n}} \triangleright C_{4}\right)$ does not have a linear resolution.
The example given above shows that the converse of Theorem 3.10 is not true in general.
Theorem 3.12 Let G_{1} and G_{2} be any two graphs containing subgraph K_{r}. Suppose that $I\left(G_{1}\right)$ and $I\left(G_{2}\right)$ have linear resolution. Then $I\left(G_{1} \triangleleft{ }_{K-} \triangleright G_{2}\right)$ has a linear resolution if and only if the following conditions are satisfied:
(i) There exist no edges $e_{1} \in E\left(G_{1} \backslash K_{r}\right)$ and $e_{2} \in E\left(G_{2} \backslash K_{r}\right)$ which are disconnected.
(ii) There exist no edges $e_{1} \in E\left(G_{1} \backslash K_{r}\right)$ and $e_{2}=\{x, y\} \in E\left(G_{2}\right)$ which $x \in V\left(G_{2} \backslash K_{r}\right)$ and $y \in V\left(K_{r}\right)$ such that e_{1} and e_{2} are disconnected.
(iii) There exist no edges $e_{1} \in E\left(G_{2} \backslash K_{r}\right)$ and $e_{2}=\{z, t\} \in E\left(G_{1}\right)$ which $z \in V\left(G_{1} \backslash K_{r}\right)$ and $t \in V\left(K_{r}\right)$ such that e_{1} and e_{2} are disconnected.
Proof. \Rightarrow) Assume that condition (i) does not satisfy. Thus there exist two edges $e_{1}=\{x, y\} \in E\left(G_{1} \backslash K_{r}\right)$ and $e_{2}=\{z, t\} \in E\left(G_{2} \backslash K_{r}\right)$ which are disconnected. Since $\{x, z\}$, $\{x, t\},\{y, z\}$ and $\{y, t\}$ are edges in $\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)^{c}$, then they form a cycle of length four in $\left(G_{1} \triangleleft_{K-} \triangleright G_{2}\right)^{c}$, a contradiction to our hypothesis that $I\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)$ has a linear resolution. The conditions (ii) and (iii) follow using similar argument. $\Leftrightarrow)$ We claim that there exist no cycle without chord C_{n} of length $n \geq 5$ in $\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)^{c}$. Being Chordal G_{1}^{c} and G_{2}^{c} guarantees to the existence of at least a vertex $x_{1} \in V\left(G_{1} \backslash K_{r}\right)$ and a vertex $x_{2} \in V\left(G_{2} \backslash K_{r}\right)$ in C_{n} which are adjacent. Further vertex, x_{3}, can belong to only $V\left(K_{r}\right)$ or $V\left(G_{1} \backslash K_{r}\right)$, because if $x_{3} \in V\left(G_{2} \backslash K_{r}\right)$ then C_{n} has a chord $\left\{x_{1}, x_{3}\right\}$. Consider $x_{3} \in V\left(K_{r}\right)$. If $x_{4} \in V\left(G_{1} \backslash K_{r}\right)$ implies that $\left\{x_{2}, x_{4}\right\}$ be a chord. Otherwise, $x_{4} \in V\left(G_{2} \backslash K_{r}\right)$, hence we have $\left\{x_{1}, x_{4}\right\} \in E\left(C_{n}\right)$ which means $n=4$. Now assume that $x_{3} \in V\left(G_{1} \backslash K_{r}\right)$. If $x_{4} \in V\left(G_{1} \backslash K_{r}\right)$ then $\left\{x_{2}, x_{4}\right\}$ is a chord. Suppose that $x_{4} \in V\left(G_{2} \backslash K_{r}\right)$. It implies that $\left\{x_{1}, x_{4}\right\} \in E\left(C_{n}\right)$, hence $n=4$. If $x_{4} \in V\left(K_{r}\right)$ then it may happen $x_{5} \in V\left(G_{1} \backslash K_{r}\right)$ or $x_{5} \in V\left(G_{2} \backslash K_{r}\right)$. In the case that $x_{5} \in V\left(G_{1} \backslash K_{r}\right)$, it follows that x_{2} is adjacent to x_{5} and in the case $x_{5} \in V\left(G_{2} \backslash K_{r}\right), x_{3}$ and x_{1} are adjacent to x_{5}, which proves the claim.
Now, it remains to show that there exists no cycle of length four in $\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)^{c}$. Suppose that $\left(G_{1} \triangleleft_{K-} \triangleright G_{2}\right)^{c}$ contains
the cycle C_{4}. Since all of the vertices of K_{r} are adjacent in $G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$, then no two vertices of K_{r} can join in $\left(G_{1} \triangleleft_{K-} \triangleright G_{2}\right)^{c}$. On the other hand, by assumption G_{1}^{c} and G_{2}^{c} are chordal graphs, hence C_{4} contains at least a vertex of $G_{1} \backslash K_{r}$ and a vertex of $G_{2} \backslash K_{r}$. Assume that there are two nonadjacent vertices of K_{r} in C_{4}. It follows that the verices of $G_{1} \backslash K_{r}$ and $G_{2} \backslash K_{r}$ are adjacent in $G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$, a contradiction. Consider the case that there is unique vertex of K_{r} in C_{4}. Suppose that two non-adjacent vertices of C_{4} belong to $V\left(G_{1} \backslash K_{r}\right)$ (or $\left.V\left(G_{2} \backslash K_{r}\right)\right)$ which means there exist two disconnected edges. Thus we reach a contradiction to condition (ii)(condition (iii)). If there exists no vertex of K_{r} in C_{4}, it implies that we have two disconnected edges, a contradiction to condition (i). This completes the proof.
A simplicial complex Δ on the vertex set V is a collection of subsets of V such that $G \subseteq F$ and $F \in \Delta$ implies $G \in \Delta$. A free vertex is a vertex which belongs to exactly one facet. A stable set or clique of G is a subset F of $V(G)$ such that $\{i, j\} \in E(G)$ for all $i, j \in F$ with $i \neq j$. We write $\Delta(G)$ for the simplicial complex on $V(G)$ whose faces are the stable subsets of G. The graph G is called CohenMacaulay(Gorenstein) over K if $K\left[x_{1}, \ldots, x_{n}\right] / I(G)$ is a Cohen-Macaulay (Gorenstein) ring, and is called CohenMacaulay (Gorenstein) if it is Cohen-Macaulay(Gorenstein) over any field; see [10].
Herzog, Hibi and Zheng classify all Cohen-Macaulay chordal graphs as follows.
Theorem 3.13 [10] Let K be a field, and let G be a chordal graph on the vertex set $[n]$. Let F_{1}, \ldots, F_{m} be the facets of $\Delta(G)$ which admit a free vertex. Then the following conditions are equivalent:

1. G is Cohen-Macaulay;
2. G is Cohen-Macaulay over K;
3. G is unmixed;
4. $\lceil n\rceil$ is the disjoint union of F_{1}, \ldots, F_{m}.

Theorem 3.14 Let G_{1} be a chordal graph on the vertex set $[n]$, and let F_{1}, \ldots, F_{a} be the facets of $\Delta\left(G_{1}\right)$ which admit a free vertex. Also assume that G_{2} be a chordal graph on the vertex set $\lceil m\rceil$ and $F_{1}^{\prime}, \ldots, F_{\beta}^{\prime}$ be the facets of $\Delta\left(G_{2}\right)$ which admit a free vertex. If G_{1} and G_{2} be Cohen-Macaulay then $G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$ is Cohen-Macaulay if and only if there exist $1 \leq i \leq \alpha$ and $1 \leq j \leq \beta$ such that $K_{r}=F_{i}=F_{i}^{\prime}$ or $K_{r}=F_{i} \subseteq F_{i}^{\prime}$ or $K_{r}=F_{i}^{\prime} \subseteq F_{i}$ and other facets of $\Delta\left(G_{1}\right)$ and $\Delta\left(G_{2}\right)$ containing free vertex be pairwise disjoint.
Proof. \Rightarrow) We proceed by contradiction assuming that $K_{r} \subset F_{i}$ and $K_{r} \subset F_{j}^{\prime}$ for some $1 \leq i \leq \alpha$ and $1 \leq j \leq \beta$. Pick the facets of $\Delta\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)$. Since $G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$ is Cohen-Macaulay, then the vertices of K_{r} belong to exactly one facet in clique complex $\Delta\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)$, by Theorem 3.13. Without loss of generality, assume that $K_{r} \subset F_{i}^{\prime}$. Since $K_{r} \neq F_{i}$, there is $x \in F_{i} \backslash K_{r}$ which is not covered by any facet with free vertex of $\Delta\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)$, because G_{1} is CohenMacaulay. Therefore, we have shown that $G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$ is not Cohen-Macaulay, a contradiction.
To show the second part, suppose that there exist $F_{i} \in \Delta\left(G_{1}\right)$ and $F_{i}^{\prime} \in \Delta\left(G_{2}\right)$ such that $F_{i} \cap F_{i}^{\prime} \neq \phi$. Since $F_{i} \neq F_{i}^{\prime}$, then there exist $x \in F_{i} \backslash F_{j}^{\prime}$ and $y \in F_{i}^{\prime} \backslash F_{i}$. We may assume, without loss of generality, that the vertices of $F_{i} \cap F_{i}{ }_{i}$ is contained in the facet F_{i} of $\Delta\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)$. Note that being Cohen-Macaulay of $G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$ implies that the vertices of
$F_{i} \cap F_{j}^{\prime}$ is contained in either F_{i} or F_{j}^{\prime}. Also, no other facet of $\Delta\left(G_{1}\right)$ which admit a free vertex can contain y, because G_{1} is Cohen-Macaulay. Hence y does not belong to any facet with free vertex in $\Delta\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)$, a contradiction.
$\Leftrightarrow)$ It suffices to show that the disjoint union of the facets containing free vertex of $\Delta\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)$ is $[n+m-r]$, by using Theorems 2.6 and 3.13. Take an arbitrary vertex $x \in V\left(G_{1} \triangleleft_{K_{-}} \triangleright G_{2}\right)$.

1. Suppose that $x \in V\left(G_{1} \backslash K_{r}\right)$. Since G_{1} is Cohen-Macaualy, hence x belongs to exactly one facet having free vertex of $\Delta\left(G_{1}\right) ;$
2. Suppose that $x \in V\left(G_{2} \backslash K_{r}\right)$. Since G_{2} is Cohen-Macaualy, hence x belongs to exactly one facet having free vertex of $\Delta\left(G_{2}\right)$;
3. Suppose that $x \in V\left(K_{r}\right)$. Since G_{1} and G_{2} are CohenMacaulay, then there exist $1 \leq i \leq \alpha$ and $1 \leq j \leq \beta$ such that $x \in F_{i}$ and $x \in F_{i}^{\prime}$. Hence, using assumption we get $F_{i}=F_{i}^{\prime}=K_{r}$ or $K_{r}=F_{i} \subseteq F_{i}^{\prime}$ or $K_{r}=F_{j}^{\prime} \subseteq F_{i}$. Therefore, the vertex x is contained in a facet which admit a free vertex in $\Delta\left(G_{1} \triangleleft_{K .} \triangleright G_{2}\right)$, as required.
Corollary 3.15 Let G_{1} be a chordal graph on the vertex set $\lceil n\rceil$, and let $F_{1}, \ldots, F_{\sigma}$ be the facets of $\Delta\left(G_{1}\right)$ which admit a free vertex. Also assume that G_{2} be a chordal graph on the vertex set $[m\rceil$ and $F_{1}^{\prime}, \ldots, F_{R}^{\prime}$ be the facets of $\Delta\left(G_{2}\right)$ which admit a free vertex. If $G_{1} \triangleleft_{K-} \triangleright G_{2}$ be Cohen-Macaulay then G_{1} and G_{2} are Cohen-Macaulay if and only if there are $1 \leq i \leq \alpha$ and $1 \leq j \leq \beta$ such that $K_{r}=F_{i}=F_{i}^{\prime}$ or $K_{r}=F_{i} \subseteq F_{i}^{\prime}$ or $K_{r}=F_{i}^{\prime} \subseteq F_{i}$ and other facets of $\Delta\left(G_{1}\right)$ and $\Delta\left(G_{2}\right)$ containing free vertex be pairwise disjoint.
Proof. \Rightarrow) With the same arguments as used in the proof of Theorem 3.14, one can show the desired conclusion.
$\Leftrightarrow)$ First assume that there exist $1 \leq i \leq \alpha$ and $1 \leq j \leq \beta$ such that $K_{r}=F_{i}=F_{i}^{\prime}$. We will show that any vertex of $G_{1} \backslash K_{r}$ and $G_{2} \backslash K_{r}$ is contained in a facet having free vertex of $\Delta\left(G_{1}\right) \backslash K_{r}$ and $\Delta\left(G_{2}\right) \backslash K_{r}$, respectively. Consider the vertices $x \in V\left(G_{1} \backslash K_{r}\right)$ and $y \in V\left(G_{2} \backslash K_{r}\right)$.Since $G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$ is Cohen-Macaulay, then there is $1 \leq s \neq i \leq \alpha$ such that $x \in F_{s}$. We can repeat the same argument to obtain $y \in F^{\prime}$. which $1 \leq t \neq j \leq \beta$ and by assumption $F_{s} \cap F_{t}^{\prime}=\phi$. Hence G_{1} and G_{2} are Cohen-Macaulay, by Theorem 3.13.
Now suppose that $K_{r}=F_{i} \subseteq F_{i}^{\prime}$ or $K_{r}=F_{i}^{\prime} \subseteq F_{i}$. Applying the same argument, the desired result yields.
Lemma 3.16 [10, Corollary 2.1] Let G be a Cohen-Macaulay chordal graph, and let F_{1}, \ldots, F_{m} be the facets of $\Delta(G)$ which have a free vertex. Let i_{i} be a free vertex of F_{i} for $j=1, \ldots, m$, and let G^{\prime} be the induced subgraph of G on the vertex set $\lceil n\rceil$. Then G is Gorenstein, if and only if G is a disjoint union of edges.
Theorem 3.14 and Lemma 3.16 imply the following characterization of Gorenstein glued graph at complete clone: Corollary 3.1 Let G_{1} be a Cohen-Macaulay chordal graph on the vertex set $[n\rceil$, and let F_{1}, \ldots, F_{π} be the facets of $\Delta\left(G_{1}\right)$ which admit a free vertex. Also assume that G_{2} be a CohenMacaulay chordal graph on the vertex set $[m]$ and $F_{1}^{\prime}, \ldots, F_{R}^{\prime}$ be the facets of $\Delta\left(G_{2}\right)$ which admit a free vertex. If there are $1 \leq i \leq \alpha$ and $1 \leq j \leq \beta$ such that $K_{r}=F_{i}=F_{j}^{\prime}$ or $K_{r}=F_{i} \subseteq F_{i}^{\prime}$ or $K_{r}=F_{i}^{\prime} \subseteq F_{i}$ and other facets of $\Delta\left(G_{1}\right)$ and $\Delta\left(G_{2}\right)$ containing free vertex be pairwise disjoint, then $G_{1} \triangleleft_{K_{-}} \triangleright G_{2}$ is Gorenstein if and only if G_{1} and G_{2} be Gorenstein and $r=2$.

SOME FACTS ON GLUING OF TWO GRAPHS AT ARBITRARY CLONE

The aim of this section is to give some properties of gluing of two graphs, line graphs or independence complexes at arbitrary clone.
Lemma 4.1 [6, Lemma 2.3] Let G be a simple graph with edge ideal $I(G)$. Then

$I(G)^{\mathrm{V}}=$

($\left\{x_{i_{\sim}, \ldots} x_{i_{r}} \mid\left\{x_{i_{\sim}}, \ldots, x_{i_{s}}\right\}\right.$ is a vertex cover of $\left.G\right\}$),
and the minimal generators of $I(G)^{\vee}$ correspond to minimal vertex covers.
Theorem 4.2 Let G_{1} and G_{2} be connected graphs containing a connected subgraph H. Then
$I\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)^{\mathrm{V}}=I\left(G_{1}\right)^{\mathrm{V}} \cap I\left(G_{2}\right)^{\mathrm{V}}$.
emma 4.3 [23] For any graph G we have

$$
\operatorname{reg}(R / I(G))=p d\left(I(G)^{\mathrm{V}}\right)
$$

Lemma 4.4 [5, Proposition 3.16] Let I_{1} and I_{2} be monomial ideals of R. Then we have:

1. $\operatorname{reg}\left(R /\left(I_{1}+I_{2}\right)\right) \leq \operatorname{reg}\left(R / I_{1}\right)+\operatorname{reg}\left(R / I_{2}\right)$;
$2 \cdot \operatorname{reg}\left(R /\left(I_{1} \cap I_{2}\right)\right) \leq \operatorname{reg}\left(R / I_{1}\right)+\operatorname{reg}\left(R / I_{2}\right)+1$.
Corollary 4.5 Let G_{1} and G_{2} be connected graphs containing
a connected subgraph H. Then we have: 1.
$p d\left(I\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)\right) \leq p d\left(I\left(G_{1}\right)+p d\left(I\left(G_{2}\right)+1\right.\right.$;
2. $\operatorname{pd}\left(I\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)^{\vee}\right) \leq$
$p d\left(I\left(G_{1}\right)^{e}\right)^{\mathrm{V}}+p d\left(I\left(G_{2}\right)^{e}\right)^{\mathrm{V}}$.
Proof. 1. Applying Theorem 4.2 and Lemmas 4.3 and 4.4, we obtain
$p d\left(I\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)\right)=\operatorname{reg}\left(R / I\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)^{V}\right)=\operatorname{reg}\left(R / I\left(G_{1}\right)^{\vee} \cap I\left(G_{2}\right)^{V}\right)$
$\leq \operatorname{reg}\left(I\left(G_{1}\right)^{\mathrm{V}}\right)+\operatorname{reg}\left(I\left(G_{2}\right)^{\mathrm{V}}\right)+1$
$=p d\left(I\left(G_{1}\right)\right)+p d\left(I\left(G_{2}\right)\right)+1$.
3. We have $I\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)=I\left(G_{1}\right)^{e}+I\left(G_{2}\right)^{e}$. Using

Lemmas 4.3 and 4.4, one obtains
$p d\left(I\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)^{\mathrm{V}}\right)=\operatorname{reg}\left(R / I\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)\right)$
$=\operatorname{reg}\left(R /\left(I\left(G_{1}\right)^{e}+I\left(G_{2}\right)^{e}\right)\right.$
$\leq \operatorname{reg}\left(R /\left(I\left(G_{1}\right)^{e}\right)\right)+\operatorname{reg}\left(R /\left(I\left(G_{2}\right)^{e}\right)\right)$
$=p d\left(I\left(G_{1}\right)^{e}\right)^{\mathrm{V}}+p d\left(I\left(G_{2}\right)^{e}\right)^{\mathrm{V}}$,
as required.
Let G be a graph on the vertices x_{1}, \ldots, x_{n}. The complement graph of G, G^{c}, is a graph with the same vertex set such that the vertices x_{i} and x_{i} are adjacent in G^{c} if and only if x_{i} and x_{i} are non-adjacent in G.
Theorem 4.6 Let G_{1} and G_{2} be connected graphs containing a connected subgraph H. Then the relation $\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)^{c}=G_{1}^{c} \triangleleft_{H^{c}} \triangleright G_{2}^{c}$ holds if and only if G_{2} be an induced subgraph of G_{1} and $H=G_{2}$ or G_{1} be an induced subgraph of G_{2} and $H=G_{1}$.
Proof. $\Leftrightarrow)$ Without loss of generality, we may assume that G_{2} be an induced subgraph of G_{1} and $H=G_{2}$, hence $G_{1} \triangleleft_{H} \triangleright G_{2}=G_{1}$ and $\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)^{c}=G_{1}^{c}$. On the other hand, since G_{2} is an induced subgraph of G_{1}, then G_{2}^{c} will be induced subgraph of G_{1}^{c} and $G_{1}^{c} \triangleleft_{H^{c} \triangleright} G_{2}^{c}=G_{1}^{c}$. Hence, it follows the required equality.
$\Rightarrow)$ First we show that $V\left(G_{2}\right) \subseteq V\left(G_{1}\right)$ or $V\left(G_{1}\right) \subseteq V\left(G_{2}\right)$, because if not, there are $x \in V\left(G_{2}\right) \backslash V\left(G_{1}\right)$ and $y \in V\left(G_{1}\right) \backslash V\left(G_{2}\right)$, then $e=\{x, y\} \in E\left(\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)^{c}\right)$. On the other hand, $e \notin E\left(G_{1}^{c}\right)$ and $e \notin E\left(G_{2}^{c}\right)$ imply that $e \notin E\left(G_{1}^{c} \triangleleft_{H^{c}} \triangleright G_{2}^{c}\right)$, a contradiction. Without loss of generality, we may assume $V\left(G_{2}\right) \subseteq V\left(G_{1}\right)$. To complete the proof we now show that $G_{2}=<V\left(G_{2}\right)>$. Suppose that there exist $x, y \in V\left(G_{2}\right)$ such that $e=\{x, y\} \in E\left(G_{1}\right)$ but
$e \notin E\left(G_{2}\right)$. One can conclude $e \in E\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)$ then $e \notin E\left(\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)^{c}\right)$. Also, we have that $e \in E\left(G_{2}^{c}\right)$ and $e \notin E\left(G_{1}^{c}\right)$, hence $e \in E\left(G_{1}^{c} \triangleleft_{H^{c}} \triangleright G_{2}^{c}\right)$, which is a contradiction.
Assume that $H \neq G_{2}$, then there is $e \in E\left(G_{2}\right)$ such that $e \notin E(H)$ or there exists a vertex $x \in V\left(G_{2}\right)$ such that $x \notin V(H)$. Since G_{2} is an induced subgraph of G_{1}, we must have $e \in E\left(G_{1}\right)$. It follows that $e \in E\left(G_{1}\right) \cap E\left(G_{2}\right)=E(H)$, a contradiction. If $x \in V\left(G_{2}\right) \backslash V(H)$, then we must have $x \in V\left(G_{1}\right)$. By definition of gluing, $V\left(G_{1}\right) \cap V\left(G_{2}\right)=V(H)$ but $x \notin V(H)$, a contradiction.
Definition 4.7 Let $G=(V(G), E(G))$ be a connected graph. The line graph $L(G)$ of G is the graph generated by $V(L(G))=E(G)$ such that for any $e, f \in V(L(G))$, e is adjacent to f in $L(G)$ if and only if $e \cap f \neq \phi$.
Lemma 4.8 Let G_{1} and G_{2} be connected graphs containing a connected subgraph H.Then $L\left(G_{1}\right) \triangleleft_{L / H} \triangleright L\left(G_{2}\right)$ is a subgraph of $L\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)$.
Proof. Clearly $V\left(L\left(G_{1}\right) \triangleleft_{L / H} \triangleright L\left(G_{2}\right)\right) \subseteq V\left(L\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)\right)$. Assume that $\left\{e_{i}, e_{i}\right\}$ be an edge of $L\left(G_{1}\right) \triangleleft_{L / H} \triangleright L\left(G_{2}\right)$. Then $\left\{e_{i}, e_{i}\right\} \in E\left(L\left(G_{1}\right)\right)$ or $\left\{e_{i}, e_{i}\right\} \in E\left(L\left(G_{2}\right)\right)$. Without loss of generality, suppose that $\left\{e_{i}, e_{i}\right\} \in E\left(L\left(G_{1}\right)\right)$. Using definition, $e_{i}, e_{i} \in E\left(G_{1}\right) \quad$ such that $e_{i} \cap e_{i} \neq \phi$, hence $e_{i}, e_{i} \in E\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)$ and $e_{i} \cap e_{i} \neq \phi$. It follows that $\left\{e_{i}, e_{i}\right\} \in L\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)$, as desired.
Theorem 4.9 Let G_{1} and G_{2} be connected graphs containing a connected subgraph H. Then $L\left(G_{1}\right) \triangleleft_{L K H} \triangleright L\left(G_{2}\right)=L\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)$ if and only if for any $e \in E\left(G_{1}\right) \backslash E(H)$ and $e^{\prime} \in E\left(G_{2}\right) \backslash E(H)$, we have $e \cap e^{\prime}=\phi$. Proof. $\Rightarrow)$ We proceed by contradiction. Suppose that there are $e \in E\left(G_{1}\right) \backslash E(H)$ and $e^{\prime} \in E\left(G_{2}\right) \backslash E(H)$ such that $e \cap e^{\prime} \neq \phi$, then $\left\{e, e^{\prime}\right\} \in L\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)$. On the other hand, the assumption $e, e^{\prime} \notin E(H)$ implies that $e, e^{\prime} \notin V(L(H))$ and thus $\left\{e, e^{\prime}\right\} \notin E(L(H))$. Although $\quad e \in V\left(L\left(G_{1}\right)\right)$ and $e^{\prime} \in V\left(L\left(G_{2}\right)\right)$, but $\left\{e, e^{\prime}\right\} \notin L\left(G_{1}\right) \triangleleft_{\left.L_{L H}\right)} \triangleright L\left(G_{2}\right)$ which is a contradiction.
\Leftrightarrow Applying Lemma 4.8, it suffices to show that $L\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right) \quad$ is a subgraph of $L\left(G_{1}\right) \triangleleft_{L(H)} \triangleright L\left(G_{2}\right)$. Clearly, $V\left(L\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)\right) \subseteq$ $V\left(L\left(G_{1}\right) \triangleleft_{L /(H)} \triangleright L\left(G_{2}\right)\right.$.Assume $\left\{e, e^{\prime}\right\} \in E\left(L\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)\right.$.One can conclude that $e, e^{\prime} \in E\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right) \quad$ and $\quad e \cap e^{\prime} \neq \phi$. Consider the following cases:

1. $e, e^{\prime} \in E\left(G_{1}\right)$, since $e \cap e^{\prime} \neq \phi$, then $\left\{e, e^{\prime}\right\} \in E\left(L\left(G_{1}\right)\right)$. It follows that $\left\{e, e^{\prime}\right\} \in E\left(L\left(G_{1}\right) \triangleleft_{L H H} \triangleright L\left(G_{2}\right)\right)$.
2. $e, e^{\prime} \in E\left(G_{2}\right)$, since $e \cap e^{\prime} \neq \phi$, then $\left\{e, e^{\prime}\right\} \in E\left(L\left(G_{2}\right)\right)$. It follows that $\left\{e, e^{\prime}\right\} \in E\left(L\left(G_{1}\right) \triangleleft_{L / H)} \triangleright L\left(G_{2}\right)\right)$.
Note that the case $e \in E\left(G_{1}\right) \backslash E(H)$ and $e^{\prime} \in E\left(G_{2}\right) \backslash E(H)$ does not need to verify, because we have $e \cap e^{\prime}=\phi$ using assumption. Therefore $L\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)$ is a subgraph of $L\left(G_{1}\right) \triangleleft_{L / H} \triangleright L\left(G_{2}\right)$, as asserted.
Let G be a graph on the vertex set $V(G)$. We can associate to G a simplicial complex, denoted by Δ_{G}, that its faces correspond to independence sets of G. The simplicial complex Δ_{G} is called independence complex of G.
A natural question is whether it is true that if H be a subgraph of G then $\Delta_{H} \subseteq \Delta_{G}$. In general, answer to this question is negative, as the following simple example shows.
Example 4.10 Let G be a graph with the vertex set $\{x, y, z\}$ and the edge set $\{x y, y z, x z\}$. Conisder H with
$V(H)=\{x, y, z\}$ and $E(H)=\{x y, y z\}$. Then Δ_{G} is a simplicial complex that its facets are $\{x\},\{y\}$ and $\{z\}$, but facets of Δ_{H} are as $\{x, z\}$ and $\{y\}$. Hence, Δ_{H} is not a subset of Δ_{G}.
Lemma 4.11 Let H be a subgraph of G. Then $\Delta_{H} \subseteq \Delta_{G}$ if and only if H be an induced subgraph of G.
Proof. \Rightarrow) Assume that there are $x, y \in V(H)$ such that $\{x, y\} \in E(G)$ but $\{x, y\} \notin E(H)$, hence $\{x, y\} \in \Delta_{H}$ but $\{x, y\} \notin \Delta_{G}$, a contradiction.
$\Leftrightarrow)$ Suppose that F be a face of Δ_{H}. Then F is an independent set in H. Also, it remains an independent set in G, because if there exist $x, y \in F$ such that $\{x, y\} \in E(G)$, contradicting to the fact that H is an induced subgraph of G.
Definition 4.12 A facet complex over a finite set of vertices V is a set Δ of subsets of V, such that for all $F, G \in \Delta, F \subseteq G$ implies $F=G$.
Definition 4.13 [1, Definition 2.2] Let Δ be a facet complex. A sequence of facets F_{1}, \ldots, F_{n} is called a path if for all $i=1, \ldots, n-1$, we have $F_{i} \cap F_{i+1} \neq \phi$. We say that two facets F and G are connected in Δ if there exists a path F_{1}, \ldots, F_{n} with $F_{1}=F$ and $F_{n}=G$. Finally, we say that is connected if every pair of facets is connected.
Definition 4.14 Let Δ_{1} and Δ_{2} be two simplicial complexes and let $\Delta_{1}^{\prime} \subseteq \Delta_{1}$ and $\Delta^{\prime}{ }_{2} \subseteq \Delta_{2}$ be connected simplicial complexes such that $\Delta_{1}^{\prime} \cong \Delta^{\prime}{ }_{2}$ with an isomorphism f. We define the glued simplicial complex of Δ_{1} and Δ_{2} at Δ_{1}^{\prime} and $\Delta^{\prime}{ }_{2}$ with respect to f as the simplicial complex that results from combining Δ_{1} with Δ_{2} by identifying Δ_{1}^{\prime} and Δ_{2}^{\prime} with respect to the isomorphism f. If Δ is the copy of Δ_{1}^{\prime} and Δ_{2}^{\prime} in the glued simplicial complex, then we denote the glued simplicial complex by $\Delta_{1} \triangleleft_{A} \triangleright \Delta_{2}$.
Theorem 4.15 Let G_{1} and G_{2} be connected graphs and H be an induced subgraph of G_{1} and G_{2}. Then

Proof. Suppose that F be a face of $\Delta_{G_{r}} \triangleleft_{\Lambda_{r r}} \triangleright \Delta_{G_{m_{n}}}$. We need to verify the following cases:
3. Take $F \in \Delta_{\text {G. }}$ but $F \notin \Delta_{H}$. If F not be an independent set in H, then there exist $x, y \in F$ such that $\{x, y\} \in E(H)$, a contradiction to hypothesis. Hence we obtain that $F \subseteq V\left(G_{1} \backslash H\right)$. Since F is an independent set in $G_{1} \backslash H$, then it remains independent in $G_{1} \triangleleft_{H} \triangleright G_{2}$. Thus $F \in \Delta_{G_{r} \triangleleft \Delta r b>F_{r}}$.
4. Take $F \in \Delta_{\text {fr }}$ but $F \notin \Delta_{H}$. By the same reason as before, we have that $F \in \Delta_{\text {Gr, } \leq m b / F_{n}}$.
5. Take $F \in \Delta_{H}$. We claim that F will be independent in $G_{1} \triangleleft_{H} \triangleright G_{2}$. Because if there exist $x, y \in F$ which are adjacent in $G_{1} \triangleleft_{H} \triangleright G_{2}$, then $\{x, y\} \in E\left(G_{1}\right)$ or $\{x, y\} \in E\left(G_{2}\right)$, while x and y are non-adjacent vertices in H, which is a contradiction to our assumption.
Corollary 4.16 Let G_{1} and G_{2} be connected graphs and H be an induced subgraph of G_{1} and G_{2}. Then
 Proof. \Rightarrow) Suppose that $G_{1} \neq H$ and $G_{2} \neq H$ and there exist $v \in V\left(G_{1}\right) \backslash V(H) \quad$ and $\quad w \in V\left(G_{2}\right) \backslash V(H)$. Since $\{v, w\} \notin E\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right)$, then $\{v, w\}$ is a face of $\Delta_{G_{r} \triangleleft \leq m b / F_{\mathrm{m}}}$. On the other hand, $\{v, w\}$ is not a face of $\Delta_{\text {fra }}$, because of $w \notin V\left(G_{1}\right)$. Also, $\{v, w\}$ is not a face of $\Delta_{\text {fra }}$, since $v \notin V\left(G_{2}\right)$. Furthermore, $\{v, w\}$ is not a face of Δ_{H}, because of $v, w \notin V(H)$. Therefore, $\{v, w\}$ is not a face of $\Delta_{\text {rra }} \triangleleft_{A_{r r}} \triangleright \Delta_{\text {Frn }}$, a contradiction.

Now, assume that there exist $e=\{x, y\} \in E\left(G_{1}\right) \backslash E(H)$ and $e^{\prime}=\left\{x^{\prime}, y^{\prime}\right\} \in E\left(G_{2}\right) \backslash E(H)$, then at least one of x or y, say x, does not belong to $V(H)$. Also, at least one of x^{\prime} or y^{\prime}, say x^{\prime}, does not belong to $V(H)$, because H is an induced subgraph of G_{1} and G_{2}. Hence we have $\left\{x, x^{\prime}\right\}$ is a face of $\Delta_{\text {f. } \triangleleft \text { mbl }}$. On the other hand, $x \notin V\left(G_{2}\right)$ and $x^{\prime} \notin V\left(G_{1}\right)$ imply that $\left\{x, x^{\prime}\right\}$ is not a face of $\Delta_{\text {f.. }} \Delta_{A_{n+}} \triangleright \Delta_{\text {fra },}$ a contradiction.
\Leftrightarrow Without loss of generality, we suppose that $G_{1}=H$. It follows that $G_{1} \triangleleft_{H} \triangleright G_{2}=G_{2}$ and then $\Delta_{\text {f. } \triangleleft m \triangleright f_{n}}=\Delta_{f_{1}}$. On the other hand, by Lemma 4.11 we obtain that $\Delta_{f_{\text {f. }}} \subseteq \Delta_{f_{f_{i}}}$, and hence $\Delta_{f_{\text {r }}} \Delta_{\Lambda_{c}} \triangleright \Delta_{f_{m_{n}}}=\Delta_{f_{f_{n}}}$. It follows the required equality. A simplicial complex Δ is recursively defined to be vertex decomposable if it has only a facet or else has some vertex v so that
1.Both $\Delta \backslash v$ and $\operatorname{link}_{A} v$ are vertex decomposable, and 2. No face of $\operatorname{link}_{\mathrm{A}} v$ is a facet of $\Delta \backslash v$.

Recall that a simplicial vertex is a vertex v such that closed neighbourhood of v is clique. A graph G is called vertex decomposable if its independence complex is vertex decomposable.
Lemma 4.17 [25, Corollary 5.5] If G is a graph such that $G \backslash N\lceil A\rceil$ has a simplicial vertex for any independent set A, then G is a vertex decomposable.
Theorem 4.18 Let G_{1} and G_{2} be the graphs such that $G_{i} \backslash N_{f_{i} i}\left[A_{i}\right]$ has a simplicial vertex for any independent set A_{i} and $i=1,2$. If for any independent set $A_{i} \subseteq V\left(G_{i}\right)$ and $i=1,2$, we have that $H \subseteq N\left\lceil A_{i}\right\rceil$, then $G_{1} \triangleleft_{H} \triangleright G_{2}$ is a vertex decomposable.
Proof. By Lemma 4.17, it suffices to show that for any independent set C, $\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right) \backslash N\lceil C\rceil$ has a simplicial vertex. For any independent set C of $G_{1} \triangleleft_{H} \triangleright G_{2}$, we investigate the following cases:

1. The independent set C contains the vertices of G_{1}. By assumption, $G_{1} \backslash N\lceil C\rceil$ has a simplicial vertex, as v, which does not belong to $V(H)$, since $H \subseteq N\lceil C\rceil$. Hence one can consider v as the simplicial vertex of $G_{1} \triangleleft_{H} \triangleright G_{2}$.
2. The independent set C contains the vertices of G_{2}. Applying the same argument as before, it yields the desired result.
3.The independent set C can be written as $C=A_{1} \cup A_{2} \cup A_{3}$ where A_{i} 's are independent sets in $G_{1} \backslash H, G_{2} \backslash H$ and H, respectively and $A_{1}, A_{2} \neq \phi$. Since $A_{3} \subseteq V(H)$ and $H \subseteq N\left[A_{i}\right]$ for $i=1,2$, and also $A_{1} \cup A_{3}$ and $A_{2} \cup A_{3}$ are independent sets, it implies that $A_{3} \subseteq A_{i}$ for $i=1,2$. Hence $\quad N\lceil C]=N_{f_{\text {I }}}\left[A_{1}\right\rceil \cup N_{f_{\text {fr }}}\left[A_{2}\right]$. From assumption $H \subseteq N\left\lceil A_{i}\right\rceil$ for $i=1,2$, it follows that $H \subseteq N\lceil C\rceil$ and $\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right) \backslash N[C\rceil$ have no vertex of H. Since there are the vertices $v_{1} \in G_{1} \backslash N_{G_{-}}\left[A_{1}\right\rceil$ and $v_{2} \in G_{2} \backslash N_{f_{t-5}}\left[A_{2}\right]$ such that $N_{G_{t},}\left\lceil v_{1}\right\rceil$ and $N_{G_{m}}\left\lceil v_{2}\right\rceil$ are clique, then v_{1} and v_{2} can be considered the simplicial vertices of $\left(G_{1} \triangleleft_{H} \triangleright G_{2}\right) \backslash N[C\rceil$, as required.
Notice that gluing of two chordal graphs is a chordal graph. The converse does not hold as the following example shows. Put $G_{1}=C_{4}$ with the edge set $\{\{x, y\},\{y, z\},\{z, t\},\{t, x\}\}$, $G_{2}=C_{3}$ with the edge set $\{\{x, y\},\{y, t\},\{t, x\}\}$. Let H be a subgraph of G_{1} and G_{2} with the edges $\{x, y\},\{y, t\}$. Observe that $G_{1} \triangleleft \triangleleft_{H} \triangleright G_{2}$ is a chordal graph whereas G_{1} is not a chordal graph.

Theorem 4.19 Let G_{1} and G_{2} be connected graphs containing a connected subgraph H and let $G_{1} \triangleleft_{H} \triangleright G_{2}$ be a chordal graph. Then G_{1} and G_{2} are chordal graphs if and only if H be an induced subgraph of G_{1} and G_{2}.
Proof. \Leftrightarrow) Assume that G_{1} is not a chordal graph, hence there exists a cycle C_{n} of length $n \geq 4$ in G_{1}. By hypothesis, gluing of G_{1} and G_{2} at clone H does not create a new edge. Then C_{n} is a cycle in $G_{1} \triangleleft_{H} \triangleright G_{2}$, contradicting to the fact that $G_{1} \triangleleft_{H} \triangleright G_{2}$ is a chordal graph.
\Rightarrow) Suppose that there are two vertices $x, z \in V(H)$ such that $\{x, z\} \notin E(H)$, but $\{x, z\} \in E\left(G_{1}\right)$ or $\{x, z\} \in E\left(G_{2}\right)$. Without loss of generality, assume that $\{x, z\} \in E\left(G_{2}\right)$. Put $G_{1}=C_{4}$ with edges $\{x, y\},\{y, z\},\{z, t\},\{t, x\}$ and H be a subgraph with edges $\{x, y\}$ and $\{y, z\}$, also G_{2} be a chordal graph such that $\{x, z\} \in E\left(G_{2}\right)$. Hence $G_{1} \triangleleft_{H} \triangleright G_{2}$ is a chordal graph whereas G_{1} is not a chordal graph, which is a contradiction.

REFERENCES

1. M. Caboara, S. Faridi and P. Selinger, Simplicial cycles and the computation of simplicial trees, J. Symbolic Computation, 42, 74-88(2007).
2. R. Chen, Minimal free resolutions of linear edge ideals, J. Algebra, 324, 3591-3613(2010).
3. CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, Available at http://cocoa.dima.unige.it
4. N. Erey, Bouquets, vertex covers and the projective dimension of hypergraphs, arxiv: 1402.3638v2(2014).
5. C. A. Francisco, L. Klingler, S. Sather-Wagstaff and J. Vassilev, Progress in Commutative Algebra 1, Walter de Gruyter(2012).
6. C. A. Francisco and A. Van Tuyl, Sequentially CohenMacaulay edge ideals, Proc. Amer. Math. Soc. 135, no. 8, 2327-2337 (electronic)(2007).
7. H. T. H‘a, A. Van Tuyl, Monomial ideal, edge ideals of hypergraphs and their graded Betti numbers, J. Algebraic Combin, 27, 215-245(2008).
8. H. T. H`a, A. Van Tuyl, Resolutions of square-free monomial ideals via facet ideals: a survey, arxiv: math/0604301v2.
9. H. T. H'a, A. Van Tuyl, Splittable ideals and the resolutions of monomial ideals, J. Algebra, 309, 405425(2007).
10. J. Herzog, T. Hibi and X. Zheng, Cohen-Macaulay chordal graphs, J. Combin. Theory Ser. A, 113, no. 5, 911-916(2006).
11. S. Jacques, Betti numbers of graph ideal, PhD thesis, University of Sheffield, Great Britain(2004).
12. K. Kimura, Non-vanishingness of Betti numbers of edge ideals, Harmony of Gröbner bases and the modern industrial society, 153-168, World Sci. Publ., Hackensack, NJ(2012).
13. H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press(1986).
14. W. Pimpasalee, C. Uiyyasathian, Clique coverings of glued graphs at complete clones, International Mathematical Forum, 5, no.24, 1155-1166(2010).
15. C. Promsakon, C. Uiyyasathian, Chromatic numbers of glued graphs, Thai J. Math, 4, no. 3, 75-81(2006).
16. S. M. Seyyedi, F. Rahmati, Algebraic properties of pseudo-complete graphs, Preprint.
17. S. M. Seyyedi, F. Rahmati, Study of algebraic properties of lollipop graphs, Preprint.
18. N. Terai, Alexander duality theorem and Stanley-Reisner rings, Surikaisekikenkyusho Kokyu- ruko(1999), no. 1078, 174-184, Free resolutions of coordinate rings of projective varieties and related topics (Kyoto 1998).
19. C. Uiyyasathian, Maximal-clique partitions, PhD Thesis, University of Colorado at Denver(2003).
20. C. Uiyyasathian, U. Jongthawonwuth, Clique partitions of glued graphs, Journal of Mathematics Research, 2, no. 2(2010).
21. C. Uiyyasathian, S. Saduakdee, Perfect glued graph at complete clones, Journal of Mathematics Research, 1, no. 1(2009).
22. R. H.Villarreal, Combinatorial Optimization Methods in Commutative Algebra(2009), Preliminary version(2012).
23. R. H.Villarreal, Cohen-Macaulay graphs, Manuscripta Math, 66, no. 3, 277-293(1990).
24. R. H.Villarreal, Monomial Algebras, Monographs and Textbooks in Pure and Applied Mathematics, 238, Marcel Dekker Inc, New York (2001).
25. R.Woodroofe, Chordal and sequentially Cohen-Macaulay clutters, Electron. J. Combin, 18, no. 1, Paper 208, 20 pages(2011).
26. X. Zheng, Resolutions of facet ideals, Comm. Algebra, 32, 2301-2324(2004).
